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Structure-aware Meta-fusion for Image Super-resolution

HAOYU MA, BINGCHEN GONG, and YIZHOU YU, The University of Hong Kong, China

There are two main categories of image super-resolution algorithms: distortion oriented and perception ori-

ented. Recent evidence shows that reconstruction accuracy and perceptual quality are typically in disagree-

ment with each other. In this article, we present a new image super-resolution framework that is capable of

striking a balance between distortion and perception. The core of our framework is a deep fusion network

capable of generating a final high-resolution image by fusing a pair of deterministic and stochastic images

using spatially varying weights. To make a single fusion model produce images with varying degrees of

stochasticity, we further incorporate meta-learning into our fusion network. Once equipped with the kernel

produced by a kernel prediction module, our meta fusion network is able to produce final images at any

desired level of stochasticity. Experimental results indicate that our meta fusion network outperforms ex-

isting state-of-the-art SISR algorithms on widely used datasets, including PIRM-val, DIV2K-val, Set5, Set14,

Urban100, Manga109, and B100. In addition, it is capable of producing high-resolution images that achieve

low distortion and high perceptual quality simultaneously.
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1 INTRODUCTION

Single image super-resolution (SISR) recovers high-resolution (HR) images from single low-
resolution ones. As a fundamental low-level computer vision problem, it has been popular in the
past decades and intrigued vast research interests. In recent years, the introduction of deep learning
also provides a significant performance boost to super-resolution models. Due to the convenience
in transferring deep learning models, tailored super-resolution algorithms have been applied to
many domain-specific problems to boost the performance of existing algorithms, such as tiny ob-
ject detection [3], video super-resolution/enhancement [14, 18], remote sensing [47], and blind
image denoising [13].

The super-resolution problem is ill posed in essence: One low-resolution image has many
corresponding high-resolution images at the same time, because part of the high-frequency
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information is forever lost due to the low sampling rate of the low-resolution image. Therefore,
a high-resolution image can be decomposed into a deterministic component and a stochastic
component. The deterministic component refers to the information in the image highly correlated
with the low-resolution image and can be recovered by super-resolution algorithms. It is strongly
related to salient structures and smooth regions. Besides those salient structures, the perceptual
quality of super-resolved images is closely related to the high-frequency information in regions
with textures and patterns. Part of such high-frequency information in the original high-resolution
image cannot be recovered due to downsampling, and the lost high-frequency information forms
the stochastic component, making image super-resolution an ill-posed problem.

Image super-resolution algorithms generally fall into two main categories: distortion oriented
and perception oriented. Distortion-oriented algorithms strive to lower reconstruction errors and
primarily focus on recovering deterministic components, as stochastic components are considered
as noises during reconstruction and often increase reconstruction errors. However, stochastic de-
tails tend to increase the perceived resolution of an image. Perception-oriented algorithms aim to
synthesize vivid stochastic components to make super-resolution images look natural and detailed.
Nevertheless, synthesized stochastic details sometimes significantly deviate from the ground truth.

Evidences in recent advancements [6] show that reconstruction accuracy and perceptual qual-
ity are typically in disagreement with each other. Distortion-oriented models tend to produce per-
ceptually unpleasant noise-free results while perception-oriented algorithms usually undermine
distortion metrics, such as Peak Signal Noise Ratio(PSNR)/Root Mean Square Error(RMSE).
Although efforts have been made to push the boundary of these two main categories, there is a
clear gap between distortion-oriented and perception-oriented models. This disagreement has be-
come a fundamental tradeoff between distortion and natural image statistics. How to introduce
stochastic details while still maintaining low distortion remains a significant challenge.

Although stochastic details are necessary to make a super-resolved image perceptually better,
the magnitude of the stochastic component to be introduced into an image depends on the actual
content as well as the user of the content. Some types of images, such as images of natural scenes
with grass and trees, can tolerate a large stochastic component while the others, such as images
of indoor scenes filled with human-made objects, may prefer a much smaller one. For the same
reason, different users of the super-resolution content may prefer different degrees of stochasticity.
Since it is cumbersome to train many super-resolution models of different degrees of stochasticity,
a single model capable of introducing varying degrees of stochasticity under the control of an
input signal is desired.

Varying degrees of stochasticity are also wanted for pixels in the same image. For instance, it is
necessary to distinguish pixels on salient structures, such as edges and contours, from the remain-
ing ones. Salient structures exhibit clear and spatially coherent orientations while the orientation
at other pixels, including those in texture regions, is more ambiguous or spatially incoherent. This
distinction implies that the deterministic component plays a much more dominant role than the
stochastic component around salient structures while the stochastic component becomes more
important at other pixels. We call pixels on salient structures structural pixels and the rest non-
structural pixels.

In this article, we present a new image super-resolution framework that is capable of striking an
excellent balance between distortion and perception. Our framework leverages meta-learning as
well as existing state-of-the-art SISR algorithms. Its core is a deep fusion network capable of per-
forming spatially varying image fusion. It takes as input two high-resolution images representing
the deterministic and stochastic components of an underlying ground-truth high-resolution image.
These two input images are respectively generated by distortion-oriented and perception-oriented
SISR algorithms. The fusion network then generates a final high-resolution image by fusing the
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Fig. 1. Left: Perception–distortion plane for PIRM self-validation dataset. We also show location of other

models such as NatSR [30], BOE [26], EUSR [8], EPSR [36] image interpolated results from ESRGAN[42] and

model interplolated results from ModelInterp [41]. Right: By preserving structure regions and controlling the

stochasticity level, we produce visually satisfactory images with lower distortion.

two input images using spatially varying weights for structural and non-structural pixels. To make
the fusion network aware of the spatial distribution of structural and non-structural pixels, a struc-
ture mapping module is designed to produce a structure map, which is concatenated with the two
input images before fusion is performed.

To make a single fusion model capable of producing images with varying degrees of stochasticity,
we further incorporate meta-learning into our fusion network. This is achieved by transforming
one of the convolutional layers in the fusion network into a meta convolutional layer, whose ker-
nel is not trained but predicted by a separate kernel prediction module. The input to this kernel
prediction module is a single parameter called stochastic weight, which controls the desired level
of stochasticity in the final high-resolution image. Once equipped with the kernel produced by
the kernel prediction module, our meta fusion network is able to produce final images at the level
of stochasticity defined by the stochastic weight. To train our meta fusion network, we propose a
structure-modulated loss, which assembles high-resolution images at varying degrees of stochas-
ticity on the fly using the aforementioned two input images and a structure guide for structural
pixels in the ground-truth high-resolution image.

Our proposed model has been tested on widely used datasets, including PIRM-val, DIV2K-val,
Set5, Set14, Urban100, Manga109, and B100. Experimental results indicate that our meta fusion
network outperforms existing state-of-the-art SISR algorithms and is capable of producing high-
resolution images that achieve low distortion and high perceptual quality simultaneously. Further-
more, it is capable of producing images with varying degrees of stochasticity according to the
input signal to the kernel prediction module as shown in Figure 1.

In summary, this article has the following three contributions.

• An efficient fusion network to integrate input images representing deterministic and sto-
chastic components and produce final high-resolution images that balance distortion and
perceptual quality.
• A meta-learning module to generate the fusion network on the fly, which can produce

images at varying degrees of stochasticity.
• A structure-modulated loss to incorporate stochastic components without destroying lo-

cal deterministic structures during training.
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2 RELATED WORK

Earlier exemplar-based methods [7, 11] require a database of external images and synthesize a high-
resolution version of the input image by searching for exemplars in the database and transferring
relevant patches from the retrieved exemplars. Later dictionary-based methods [34, 35, 46, 48] learn
a compact dictionary in feature space to reduce the computational cost of patch-level exemplar
retrieval. While the conventional non-DNN methods explicitly utilise external image and feature
priors such as edge, gradient [31, 32], and internal non-local similarity [16], the deep learning–
based methods implicitly adopt image and feature priors that are inscribed in training datasets,
and achieve great breakthrough in accuracy.

Distortion-oriented model. In deep learning, the common approach to solving the super-
resolution problem is to design a model capable of generating estimated super-resolved images
with the lowest expectation of distortion. SRCNN [9] is a deep network with three convolutional
layers designed for super-resolution regression given pairs of low-resolution and high-resolution
images. SRResNet [17] and EDSR [19] suggest that multiple deep and wide residual networks can
further improve the performance. At present, EDSR acts as a baseline for cutting-edge distortion-
oriented models. With the idea of shifting the limited computational resources based on the im-
portance of informative components, RCAN [50] incorporates channel attention mechanism into
a residual in residual structured network. SAN outperforms the RCAN by exploiting the inherent
feature correlations in intermediate layers with the second-order attention network. SCAN [45],
compared against RCAN, developes a new colour attention mechanism and shows performance
improvements on real SISR competition dataset. Another state-of-the-art architecture in Reference
[20] is also invented to minimize the distortion by aggregating the features and focusing more on
the critical contents. Other frameworks are also invented to tackle downstream distortion-oriented
tasks such as blind super-resolution [38, 49], arbitrary scale super-resolution [39], and fast infer-
ence [37].

Perception-oriented model. The milestone in this area is SRGAN[17], next enhanced by ESR-
GAN [42], where a stand-alone discriminator is designed to judge whether the image is distinguish-
able from the real image and penalize on the generator if the image is over-smoothed. Perceptual
loss is also used to evaluate the high-level similarity between generated super-resolution images
and original high-resolution images to encourage semantic similarities instead of enforcing pixel-
wise concurrence. SFT-GAN [40] transforms spatial features to include high-level categorical prior
into SRGAN, while NatSR [30] uses low-level domain prior, showing that auxiliary image statis-
tics can be used to improve perceptual quality. Advancements in image stylization also have been
adopted in SRNTT [51], where a high-resolution reference image is used to compensate for missing
details during super-resolution.

Meta-learning. Known as “learning to learn,” meta-learning is a research field that intends
to gain experience from a wide range of machine learning tasks. The learned metadata can be
adapted or generalized to new tasks or new environments with minimal effort. Some meta-learning
applications include few-shot/zero-shot learning [2, 29] and transfer learning [43]. Meta-SR [15]
first adopts weight prediction, one of the meta-learning strategies, to perform arbitrary scale super-
resolution with one model. In Meta-SR, different kernel weights are calculated given different
upscale and pixel locations, achieving better performance on various scale factors compared to
baseline. This suggests that it is possible to use meta-learning in a super-resolution generative
network and inspires our meta-fusion model design.

The tradeoff between perception and distortion has been considered explicitly in recent works.
EPSR [36] controls the tradeoff by carefully balancing weight between reconstruction loss and
perception loss. Each tradeoff point requires a delicately chosen weight during training model.
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Fig. 2. Pipeline for the proposed meta-fusion algorithm. (a) Deterministic and stochastic backbones. (b) A

scalar stochastic weight α is used by kernel prediction module to predict kernel parameters. (c) Determinis-

tic/stochastic images are used by fusion network to generate final output images.

Michelini et al. [26], using an iterative Back-Projections network, can achieve the tradeoff by
adjusting the amplitude of input noise. The most relevant work to ours is DTSN [12], where
deterministic and stochastic components are generated separately and merged by a fixed network.
In this article, the fusion network is generated based on input parameter on the fly. We use a
single model to generate HR image in different perception and distortion tradeoff.

3 ALGORITHM

3.1 Overview

The pipeline for our proposed method is shown in Figure 2. Given a low-resolution image I lr , a
SISR algorithm reconstructs an estimated high-resolution image I sr . It should be faithful to the
ground-truth high-resolution image Ihr and as visually pleasant as possible. To achieve both goals,
our proposed method has two stages. In the first stage, two HR images, I sr,d and I sr,s , are con-
structed by two super-resolution models trained with different loss functions to estimate a de-
terministic component and a stochastic component, respectively. The former aims to recover the
major structural information of the unknown high-resolution image. The latter aims to hallucinate
the high-frequency information lost during down-sampling.

In the second stage, the deterministic and stochastic components are fused together to produce
the final high-resolution image. Traditionally, it is done by image interpolation I sr,d +αI sr,s . Here
α is a scalar that serves as a weight of the stochastic component introduced into the final super-
resolution image. However, since α is fixed spatially, in regions dominated by the deterministic
component, it inevitably introduces extra noise from the stochastic component and pollute the
synthesized high-resolution image.
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Therefore, in the second stage, deterministic and stochastic components, I sr,d and I sr,s , along
with stochastic weight α are taken by our fusion network as input. In particular, α is the input to
the kernel prediction module, which is the meta-learning module that generates kernel weight and
bias for one of the convolutional layers in our network. As identifying spatially varying structural
information plays an important role in spatially varying image fusion, a structure mapping module
is designed to predict a structure map of the image. Then the predicted structure map is concate-
nated with I sr,d and I sr,s , and the final super-resolved image is synthesized as f (I sr,s , I sr,d ,θf (α )),
where θf represents all network parameters generated by the kernel prediction module. To speed
up the convergence of the training stage, we also adopt a residual learning architecture for our
fusion network, which is trained by optimizing the structure-modulated loss function described
in Section 3.5 in an end-to-end manner.

3.2 Deterministic and Stochastic Component Generation

Although the choices of networks for deterministic and stochastic component generation are not
limited, it is expected that the network for deterministic component reconstruction is able to recon-
struct images as faithfully as possible and achieve reasonably high PSNRs. Moreover, the network
for stochastic component synthesis should be able to hallucinate high-frequency information lost
during down-sampling. These two networks serve as the backbones and have a fundamental im-
pact on the final results produced by our fusion network.

In our experiments, we use existing super-resolution networks as our networks for determinis-
tic and stochastic component generation. To facilitate a comparison with interpolation strategies
such as naive image interpolation strategy and other state-of-the-art strategies such as model in-
terpolation [41], we use ESRGAN [42] for both deterministic and stochastic component generation.
We also use the BOE model [26] to compare the influence of different backbone choices. To ensure
pixel-level faithfulness of the deterministic branch, L1 loss is used and model parameters θd are
trained as arg minθd

| |I sr,d − Ihr | |. For the stochastic branch, we adopt the original perceptual loss
settings described in their works. The stochastic component is calculated by simple subtraction of
I sr,d from image generated by the stochastic backbone as shown in Figure 2.

In comparison to traditional one-stage super-resolution models, our design divides the super-
resolution task into two stages, generating deterministic and stochastic components and merging
their useful information together. This takes advantage of different network architectures and
optimizes the network output.

3.3 Image Fusion Network

As shown in Figure 2, our image fusion network can be decomposed into three parts: a kernel
prediction module, a structure mapping module, and a structure-guided fusion module.

Kernel Prediction Module. Because the proportion of the stochastic component introduced
into the final high-resolution image is not invariant when different stochastic weights are used,
it is necessary to use a kernel prediction module to modulate the kernel weight and bias of our
deterministic-stochastic fusion network. Inspired by MetaSR [15], our kernel prediction module
includes a hidden layer of 16 neurons, and the stochastic weight α is taken as the input. Kernel
weight and bias of one of the convolutional layers in our fusion network are prescribed by the
kernel prediction module and are controlled by stochastic weight. After the training stage, the ker-
nel prediction module can generate kernel weight and bias for the associated meta convolutional
layer according to any given stochastic weight, and these predicted kernel parameters adjust our
fusion network automatically without the need to re-train the network.
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Structure Mapping Module. To make the fusion network aware of the spatial distribution of
structural and non-structural pixels, we introduce a structure mapping module to infer a structure
map. Because structural information belongs to low-level features, we use five cascaded convolu-
tional layers as a structure mapping branch, which is similar to VGG16 before the second max-
pooling layer. To expand the receptive field without the loss of resolution, we also remove the
first max-pooling layer and replace the following conventional convolutional layer with a dilated
convolutional layer. Although we do not assign a separate loss function to supervise the structure
mapping module, experimental results have indicated that this module succeeds in capturing the
structures in the input images.

Structure-guided Fusion Module. As shown in Figure 2, the structure-guided fusion mod-
ule takes an image with a deterministic component, another image with a stochastic component,
and a structure map generated by the structure mapping module as the input. To facilitate the
convergence of the network, we first obtain a simple prediction of the output image by linearly in-
terpolating the deterministic and stochastic components using α and then use the fusion module to
infer the residual between the final output image and this simple prediction. Although we use only
three convolutional layers in the fusion module, it is surprisingly effective to handle the input im-
ages. Kernel parameters for the middle convolutional layer in the fusion module are prescribed by
the kernel prediction module. The structure of our proposed fusion network is a modified version
of the basic residual unit from Reference [42].

3.4 Image Structure Labelling

It has been observed that the weights for deterministic and stochastic components are not evenly
distributed across all pixels. Salient edges leave strong traces in low-resolution images, and the
network for deterministic component generation is able to reconstruct them accurately. We denote
these structural areas as M and use them to generate losses during training, so that the network
will learn their distribution implicitly and do inference after the training. To avoid missing many
possible structures, we use the commonly used Canny edge detector rather than other high-end,
structure-specific boundary detectors such as COB [22], HED [44], or ELSD [27].

According to the analysis, if an edge shows up in I sr,d and Ihr simultaneously, then it is a
deterministic structure. If an edge is detected at the same location in both I sr,d and Ihr , then any
pixel on this edge segment is considered as a structural pixel. Because of possible localization error,
a margin δi is calculated as the distance from the location of the current pixel to the closest edge
pixel, and any pixels with distance δi smaller than a given threshold δa are considered as structural
pixels. Let ti denote one of the detected edge pixels T in the ground-truth image at location i and
sj denote one of the detected edge pixels S in the super-resolution image at location j; then the
structure guide Mi at pixel location i is calculated as follows:

δi = min
sj ∈S
| |ti − sj | |2,

Mi = X (δi − δa ),
(1)

where X (x ) = 0 when x > 0 and X (x ) = 1 otherwise. All pixels within the margin δa are consid-
ered as structural pixels. Pixels within the structural area are encouraged to align with the deter-
ministic component. In our experiments, δa is set to 3. This whole process is shown in Figure 3.

3.5 Structure-modulated Loss

The problem with image interpolation is that although it guarantees a smooth transition from
distortion-oriented results toward perception-oriented results when the stochastic weight is
continuously increasing, it treats all pixels in the image alike. As a matter of fact, structural
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Fig. 3. Pipeline for image structure extraction. (a) High-resolution image Ihr and deterministic component

I sr,d . (b) Their Canny edges are extracted. (c) The intersection of their edges is extracted as the structure.

(d) All pixels within the distances δa from extracted structures are structural pixels.

areas reconstructed by the respective networks for deterministic components and stochastic
components are quite different. Linearly interpolating them does not take this problem into
consideration and destroys the structures in both images.

Existing work on model interpolation [41] has taken the non-linearity of models into considera-
tion, but it is still not guaranteed that the interpolated model performs optimally at every working
point: Weights from some layers have more than 80% absolute differences even if the perception-
oriented model is fine-tuned from the distortion-oriented model and might tremendously amplify
the noise because of the high non-linearity of the model. Model interpolation [41] also requires the
same backbone network for both interpolated models, which limits the flexibility of network de-
sign, as some network architectures could be more capable in generating deterministic/stochastic
components than the others.

Stochastic components behave like uncorrelated signals compared with deterministic compo-
nents; thus, they can be considered as addictive noise that we cannot predict. But removing them
improves the distortion metrics of predicted super-resolution images. Because stochastic compo-
nents are lost during down-sampling, it is impossible to reconstruct stochastic components accu-
rately. However, stochastic components are crucial to human cognition, especially in areas with-
out salient edges and other significant high-frequency information. Therefore, we rely on spatially
varying interpolation between deterministic and stochastic components to introduce the stochas-
tic component into the final high-resolution image. In particular, we only keep the deterministic
component in structural areas and introduce the stochastic component into texture areas by inter-
polating the deterministic and stochastic components. This gives rise to the structure-modulated
loss for training our fusion network,

L =
∑

m,n

Mm,n

3n0
| |I sr − I sr,d | |1 +

∑

m,n

1 −Mm,n

3n1
| |I sr − [I sr,d + αI sr,s ]| |1, (2)

where M is the structure guide as described in Section 3.4, I sr is the synthesized high-resolution
image produced by our fusion network, I sr,d is the input image with the deterministic component,
I sr,s is the input image with the stochastic component, n0 denotes the number of structural
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pixels, n1 the number of non-structural pixels in the training image patch, and α is the stochastic
weight, which is randomly sampled during training to obtain non-uniformly interpolated images
with varying degrees of stochasticity as the supervision of our fusion network. This structure-
modulated loss is the only loss function in our fusion network. Despite its simplicity, it can
effectively train our fusion network to produce super-resolution images with varying degrees of
stochasticity.

4 EXPERIMENTS

4.1 Training Details and Datasets

In the first stage, similarly to many perception-oriented models, we use a scaling parameter of
×4 during down-sampling for the training of the backbone. The deterministic component is ob-
tained with a pretrained ESRGAN backbone [42] with L1 loss. Two stochastic components are ob-
tained with a pretrained ESRGAN backbone and a pretrained BOE backbone [26] with perceptual-
oriented training settings described in their papers, respectively.

To introduce rich and diverse structures and textures in our training process, we follow the
same setting in Reference [42], and our training data include the DIV2K training set [1], the Out-
doorScene training set [40], and the Flickr2K dataset [33]. We evaluate our proposed methods on
datasets with various attributes: Set5 [4], Set14 [48], B100 [23], Urban100 [16], Manga 109 [24], the
DIV2K validation set [1], and the PIRM validation set [5].

In the second stage, the fusion network is trained with a mini-batch size of 16. The images are
cropped into patches of size 128×128 during training. The image patches are also randomly flipped
and rotated for simple data augmentation. We adopt the ADAM algorithm to do the training. The
initial learning rate is set to 1 × 10−4 and exponential decay rates βs are [0.9, 0.99], respectively.
The training continued for 40k iterations. The stochastic weight α is generated randomly from 0
to 1 for each training sample. The structure margin δa is set to 3 during training. We conduct the
training on one RTX2080Ti, and the training takes two days. The inference time for a 2K image
pair is roughly 0.2 s.

4.2 Quantitative Results

We verify the performance of our proposed algorithm on commonly used super-resolution datasets
under both blind image quality metric NIQE [25] and fully referenced metric RMSE. NIQE is a no-
reference image quality assessment metric to estimate the perceptual quality of an image and is
fast enough to evaluate a large number of images generated with different stochasticity levels in
our experiments. The NIQE is trained on 125 pristine images with patch size set to 96 × 96 and
sharpness threshold 0.75. To make a comparison with other perception–distortion controllable
methods such as model interpolation [41], image interpolation [42], noise-tuned method BOE [26],
and flow-based method [21], two meta-fusion networks with stochastic backbones of ESRGAN and
BOE (track 3) are used respectively to make a comparison.

We evaluate these algorithms on the perception–distortion plane. Because it is impossible to
evaluate every working point on the curves, we evaluate the model performance with several
working points by selecting different stochastic parameter α ranging from 0 to 1 with a step of
0.1 and interpolate the rest of the curves. Methods like SRFlow [21] and BOE [26] have different
starting points, because these two methods have their own backbone networks that are highly
integrated into their method and cannot be altered. We find that given the suitable deterministic
and stochastic backbones, our fusion network can produce the best results under both metrics
of NIQE and RMSE on every dataset, as shown in Figure 4. It is not surprising to see that our
proposed algorithm has achieved the most significant performance improvement over datasets
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Fig. 4. Quantitative comparison of state-of-the-art methods on commonly seen SISR datasets, including Set5,

Set14, B100, Urban100, Manga 109, and DIV2K-val.

with rich structures such as Manga109 and Urban100. For instance, when the RMSE is controlled at
around 7.7, the NIQE of our proposed method is around 0.5 better than the second best algorithm
on Manga109, and the NIQE of our proposed method is around 0.6 better than the second-best
algorithm on Urban100 when the RMSE is controlled at around 13.2. Even in datasets that consist
of mostly low-resolution texture-rich objects such as B100, our model is still able to have a margin
around 0.2 when RMSE is controlled around 12. Both improvements in NIQE and RMSE illustrate
that our fusion network has the capability to extract structure from all kinds of images, preserve
their deterministic components, and hallucinate the texture areas efficiently.

Our proposed fusion network is also highly efficient regarding computational complexity. If the
computation cost of a forward pass of a backbone network is C, then the computational complexity
of our proposed model is O(2C) for the first inference, because most computational cost is due to
the deterministic and stochastic backbones. When the input image remains the same while the
level of stochasticity is adjusted, the inference time becomes almost negligible due to the tiny
size of our fusion network. As a comparison, the complexity of model interpolation [42] is O(2C),
because it requires the models to be interpolated first before inference. The complexity of BOE [26]
and SRFlow [21] is O(C), because they run the whole network during every inference and for every
α value.

4.3 Visual Results

Our proposed algorithm has a better performance when dealing with structural areas and effec-
tively preserves deterministic components when given a target distortion level. We compare our
algorithm with other controllable interpolation methods, namely image interpolation and model
interpolation described in Reference [41], and noise-adding strategy described in Reference [26].
We use ESRGAN backbones for fair comparison. Each row in Figure 5–Figure 12 from left to right is
the ground-truth image and the magnified patches from BOE, image interpolation, model interpo-
lation, and ours, respectively. We present all images with comparable RMSE in each row, because
it will be meaningless to compare the perceptual performance without constraining the distortion
level. The RMSE for the corresponding super-resolved image is at the bottom of the patch.
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Fig. 5. Visual comparison of super-resolution images generated by different state-of-the-art fusion strategies

such as BOE [26], model interpolation [42], and SRFlow [21] under similar RMSE (marked in (·)).
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Fig. 6. Visual comparison of super-resolution images generated by different state-of-the-art fusion strategies

such as BOE [26], model interpolation [42], and SRFlow [21] under similar RMSE (marked in (·)).
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Fig. 7. Visual comparison of super-resolution images generated by different state-of-the-art fusion strategies

such as BOE [26], model interpolation [42], and SRFlow [21] under similar RMSE (marked in (·)).
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Fig. 8. Visual comparison of super-resolution images generated by different state-of-the-art fusion strategies

such as BOE [26], model interpolation [42], and SRFlow [21] under similar RMSE (marked in (·)).
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Fig. 9. Visual comparison of super-resolution images generated by different state-of-the-art fusion strategies

such as BOE [26], model interpolation [42], and SRFlow [21] under similar RMSE (marked in (·)).
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Fig. 10. Visual comparison of super-resolution images generated by different state-of-the-art fusion strate-

gies such as BOE [26], model interpolation [42], and SRFlow [21] under similar RMSE (marked in (·)).
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Fig. 11. Visual comparison of super-resolution images generated by different state-of-the-art fusion strate-

gies such as BOE [26], model interpolation [42], and SRFlow [21] under similar RMSE (marked in (·)).
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Fig. 12. Visual comparison of super-resolution images generated by different state-of-the-art fusion strate-

gies such as BOE [26], model interpolation [42], and SRFlow [21] under similar RMSE (marked in (·)).
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Fig. 13. Left: Kernel prediction module predicts convolutional kernels accurately. Middle: Concatenation

performs better than multiplication in structure map. Right: Models are trained with different stochastic

backbones but tested with the same stochastic backbone, which are almost identical.

Fig. 14. (a) High-resolution image Ihr . (b) Structure map (normalized for better visualization). (c) Structure

guides.

It can be observed from Figure 5 that images generated by our method have better visual quality
than other controllable interpolation methods. Given a fixed target distortion level, our method can
produce more plausible stochastic details while preserving the accuracy of structures. This observa-
tion is also confirmed by the quantitative results from Figure 4. For instance, our methods can pro-
duce more accurate structures, such as building contours in images 14, 16, and 83 from Urban100.
Moreover, our proposed method is also able to hallucinate more texture details on the back surface
of barbara’s chair, house wall in image 0808, and other high-frequency textures in 0823 and 0869
from DIV2K. Therefore, our method can produce more plausible stochastic details while preserv-
ing structure accuracy when a target distortion level is defined by the user. The advantage of our
method exists at nearly all distortion levels and can be observed from images with different natures.

4.4 Ablation Studies

To investigate how the proposed modules influence the final performance of the algorithm, we
conduct an ablation study by replacing the kernel prediction module. We also visualize the output
of the structure map to evaluate its correlation with the given structure guide. To examine how
provided stochastic components influence the final output image, we also test models trained with
different stochastic backbones with the same stochastic inputs.

Kernel Prediction Module. By replacing the only meta-convolutional layer with a conven-
tional convolutional layers and fixing the stochastic weight α , the model will lose the capability to
adjust to a different α . But we will be able to examine how well the performance of our proposed
algorithm is comparing to non-adjustable models. The result shown in Figure 13 (left) illustrates
that our proposed method can predict the kernels trained separately under different stochastic
weights α settings and provides almost identical results.

Structure Mapping module. We find that concatenation is better for convergence than mul-
tiplication to deal with the structure map, as shown in Figure 13 (middle). This might be because
our mapping network are not supervised by the structure guide explicitly and the structure guide
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itself is not a sparse signal. Although we do not apply any specific objective function to the struc-
ture mapping module, it can still successfully infer the image structure and pass it to the following
structure-guided image fusion module. Several examples are shown in Figure 14. Comparing to
image structure labels, it turns out most structures are extracted successfully even if we never use
the structure label explicitly.

Although it is possible to use an edge detector to generate the structure map based on the I sr,d ,
and use it for the deterministic edge-guided image interpolation, it is sub-optimal. This is because
only edges both detected in the high-resolution and deterministic component are considered as
correctly reconstructed structures, and edges detected only in the deterministic component are
considered as falsely reconstructed structures. Since the high-resolution image is not available
during inference, we will have to use a CNN to predict potential structure map. To verify the ne-
cessity of the structure map, we apply the same edge detection method to get the structure map
based on the I sr,d and use it for the deterministic edge-guided image interpolation. The results are
shown in Table 1. This result illustrates although deterministic edge-guided image interpolation
performs better than direct image interpolation in most cases, it is stably worse than our proposed
CNN-based method at any given level of RMSE. This is because the proposed CNN network can
identify some falsely reconstructed edges in the deterministic component and alleviate the recon-
struction error from them.

Moreover, the reconstruction of the deterministic component is not accurate. If we use edge
detection methods to extract edge areas only in the deterministic component, then it will in-
clude falsely reconstructed edges/artefacts. Therefore, we use CNN to predict the structure map
generated from both high-resolution images and the deterministic component is essential in our
experiment.

Stochastic Backbone. Because the deterministic component is the least distorted information
generated by the network, we expect structure areas that are mostly related to the determinis-
tic component to avoid potential noise introduced by the stochastic backbone. To examine if the
stochastic component undermines the generation of structure information, we train two fusion
networks with the BOE stochastic backbone and the ERSGAN stochastic backbone, respectively,
and test them on the same stochastic component generated by the ERSGAN backbone. If the sto-
chastic backbone has little contribution in identifying structure areas, then changing them will
not have a large difference on the final performance. The result shown in Figure 13 (right) demon-
strates that they are almost identical, which verifies our expectation that structure information
learned by the network is mostly extracted from deterministic component.

5 CONCLUSIONS

In this article, we have presented an image super-resolution framework that is capable of gener-
ating a high-resolution image by fusing a pair of deterministic and stochastic images using spa-
tially varying weights. To make a single fusion model produce images with varying degrees of
stochasticity, we further incorporate meta-learning into our fusion network in the form of a ker-
nel prediction module. Experimental results indicate that our meta fusion network outperforms
existing state-of-the-art SISR algorithms on widely used datasets, including PIRM-val, DIV2K-val,
Set5, Set14, Urban100, Manga109, and B100.

APPENDICES

A EVALUATION METRICS

Here, we provide PSNR (RMSE) and NIQE results as in Reference [5], where RMSE is used to eval-
uate the distortion level and NIQE is used to evaluate the perceptual performance. PSNR is exactly
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RMSE followed by a logarithmic operation. As discussed in Reference [5], SSIM is a metric for pre-
dicting the perceived quality; however, it has been increasingly criticized for its poor correlation
with human perception of image quality. PSNR-HVS-M and PSNR-HVS [10, 28] take the Contrast
Sensitivity Function and the between-coefficient contrast masking of DCT basis functions into
evaluation, and mimic the human perception to some extent. These indices behave like the con-
ventional distortion metric RMSE with a slight bias toward better perceptual performance, which
makes these metrics inferior in judging the performance of the perceptual–distortion tradeof,f as
they are considered a fixed combination of the two evaluation metrics. Therefore, we stick to our
choices of evaluation metrics as our main metrics. Nevertheless, we also provide the evaluation
results of these metrics. Results in Figure 15 illustrate that our proposed method is superior to all
other tradeoff controllable methods such as ESRGAN [42], BOE [26], and a Flow-based method [21].
In addition, we achieve better or comparative performance with most non-controllable methods
at certain tradeoff points over all testing datasets. But we stick to the same testing protocol as in
Reference [5] according to the nature of SSIM and RMSE.

The results under PSNR-HVS-M and PSNR-HVS [5] are very similar, as shown in Figures 16
and 17.

Fig. 15. Comparison of SSIM among state-of-the-art methods on commonly seen SISR datasets, includ-

ing Set5, Set14, B100, Urban100, Manga 109, and DIV2K-val. Smaller NIQE and larger SSIM indicate better

performance.

B STRUCTURAL TAGS

If we use traditional edge detection methods to extract edge areas in the deterministic component
only, then it will include falsely reconstructed edges/artefacts. There are three types of edges:
(a) edges detected in both the high-resolution image and deterministic component are correctly
reconstructed structures; (b) edges detected in the high-resolution image only are considered as
the true stochastic component, which is forever lost during down-sampling; and (c) edges detected
in the deterministic component only are falsely reconstructed structures. The reconstruction of the
deterministic component is not accurate. The structures defined in our experiments only refer to
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Fig. 16. Comparison of PSNR-HVS among state-of-the-art methods on commonly seen SISR datasets, includ-

ing Set5, Set14, B100, Urban100, Manga 109, and DIV2K-val. Smaller NIQE and larger PSNR-HVS indicate

better performance.

Fig. 17. Comparison of PSNR-HVS-M among state-of-the-art methods on commonly seen SISR datasets,

including Set5, Set14, B100, Urban100, Manga 109, and DIV2K-val. Smaller NIQE and larger PSNR-HVS-M

indicate better performance.

edges detected in both the high-resolution image and deterministic component. Since the high-
resolution image is not available during inference, we have to use a CNN to classify potential
structural areas. Therefore, using a CNN to predict the structure map generated from both the
high-resolution image and the deterministic component is essential in our method.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 2, Article 60. Publication date: February 2022.



Structure-aware Meta-fusion for Image Super-resolution 60:23

Table 1. Evaluation of the Simple Image Interpolation, Deterministic Edge-guided

Image Interpolation, and our Proposed Model on PIRM Validation Set

NIQE 10.0 10.3 10.6 10.9 11.2 11.5 11.8 12.1 12.4 12.6

image interp. 5.63 4.56 4.12 3.87 3.71 3.58 3.45 3.34 3.25 3.17
w/o high-res 5.60 4.34 4.01 3.79 3.64 3.52 3.44 3.37 3.29 3.22
proposed 5.51 4.25 3.91 3.68 3.55 3.46 3.36 3.27 3.21 3.15

Our proposed method always has a better perceptual index in comparison to deterministic

edge-guided interpolation at any level of RMSE.

To illustrate this, our experiment uses a traditional edge detection method to generate the struc-
tural map from the deterministic HR output only and then uses this structural map to interpolate
the deterministic and stochastic components by only keeping the deterministic component in the
structural area while interpolating the two components in the non-structural area. The result is
illustrated in Table 1. We test different strategies on PIRM validation set and follow the same eval-
uation metric as in the original paper. We compare their perceptual metric NIQE by controlling
RMSE. Note that, generally, images with lower NIQE have better visual quality. The result indicates
that images interpolated using deterministic edge maps are stably worse than our proposed CNN-
based method at any given level of RMSE. This is because the proposed CNN network can identify
falsely reconstructed edges in the deterministic component and decrease the reconstruction error
caused by them.
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