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IMAGINE Lab Seminar • École des Ponts ParisTech

January 28, 2026



Outline

1 Motivation

2 ZeroKey: Zero-Shot 3D Keypoint Detection

3 PatchAlign3D: Language-Aligned 3D Part Segmentation

4 Conclusion & Future Directions

Bingchen Gong 3D Understanding via Foundation Models 2/42



Outline

1 Motivation

2 ZeroKey: Zero-Shot 3D Keypoint Detection

3 PatchAlign3D: Language-Aligned 3D Part Segmentation

4 Conclusion & Future Directions

Bingchen Gong 3D Understanding via Foundation Models 3/42



Why Localized 3D Understanding?

Goal: Understand 3D shapes at the sub-shape
level

Keypoint detection (e.g. wing tip, leg joint)

Part segmentation (e.g. wing, tail, fuselage)

Semantic labeling without manual annotation

Language-driven queries (“show me the wing”)

Traditional approach:

Expensive per-category 3D annotations

Category-specific models

Poor generalization to new shapes

Key Challenge

How can we achieve fine-grained 3D
understanding without 3D
supervision?

Our Insight

Leverage Multi-Modal LLMs and 2D
foundation models to bridge the gap
from 2D→3D.
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Contributions at a Glance

ZeroKey (ICCV 2025)

• First zero-shot 3D keypoint detector
• No 3D annotations needed
• 79.43% IoU@0.10 (3× baselines)

PatchAlign3D (arXiv 2025)

• SOTA zero-shot 3D part segmenter
• Single feed-forward pass (0.4s)
• 56.9% mIoU on ShapeNetPart

Common thread: Language grounding + 2D foundation
models → localized 3D understanding without 3D supervision
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Background: Foundation Models We Build On

Vision-Language Models

CLIP / OpenCLIP: Contrastive
image-text pre-training; shared
embedding space for images and text

SigLIP: Sigmoid-based variant —
per-pair contrastive loss (no softmax)

GPT-4o: Multimodal LLM with image
understanding and reasoning

Visual Feature Extractors

DINOv2: Self-supervised ViT producing
dense local features; excels at spatial
correspondence

Molmo: MLLM trained with pixel-level
point annotations; can output precise
(x , y) coordinates

Key insight: These 2D models encode rich geometric and semantic knowledge.
Our work transfers this knowledge to 3D without 3D-specific supervision.
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Two Complementary Approaches

ZeroKey (ICCV 2025)

Task: Zero-shot 3D keypoint detection

Key idea: Exploit pixel-level MLLM
annotations across multi-view renderings

Pipeline: GPT-4o → Molmo →
back-project → HDBSCAN

Result: Competitive with supervised
methods; no 3D annotations needed

PatchAlign3D (arXiv 2025)

Task: Zero-shot 3D part segmentation

Key idea: Encoder-only 3D model with
language-aligned patch features

Training: DINOv2 distillation → SigLIP
text alignment

Result: SOTA across benchmarks;
single feed-forward pass

Common theme: Foundation models + lan-
guage grounding −→ localized 3D understanding
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ZeroKey — Visual Overview

Unseen 3D
Shape/Category

Unseen 3D 
Keypoint Queries

Tail
Back Wingtip
Front Wingtip
Turbine
Cockpit
Nose

(a) Ours (b) CLIP-DINOiser (c) Ground Truth

Molmo! Point 
to {query} in 
this image.

Without ground truth labels, ZeroKey leverages pixel-level MLLM reasoning to extract and name

salient 3D keypoints — achieving competitive performance with supervised methods.
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ZeroKey — Problem Setup

3D Keypoint Detection

Given a 3D mesh, detect semantically
meaningful points

Schelling points: game-theoretic focal points
people select independently

E.g. wing tips, wheel centers, chair legs

Traditionally requires dense per-point
annotations

Zero-shot setting:

No 3D keypoint labels at training time

No category-specific fine-tuning

Must both localize and name keypoints

First-of-its-kind

ZeroKey is the first method to show
that pixel-level MLLM annotations
can be exploited for 3D keypoint
detection without any ground truth.

Evaluation:

KeypointNet benchmark

Categories: airplane, chair, table

Metric: IoU at geodesic distance
thresholds
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ZeroKey — Pipeline Overview

Camera 

Projection Cj

Lifting from 

2D to 3D

Keypoint Query ki

Nose

“point to the nose tip in this image”

Spatial Attention Images Vi

2D Points pi,j

M Views

3D point Pi,j Aggregation

Aggregated 3D Point Pi

LLM

MOLMO

Stage 1: 2D Detection
Molmo localizes each named

keypoint across N views

pi,j = Molmo(Vj , ki )

Stage 2: Soft Voting
Gaussian kernel weights for

back-projection

Wi,j ∝
∑

exp

(
− ∥pi,j−p∥2

2σ2

)
Stage 3: Clustering

HDBSCAN aggregation with mutual
reachability

dmreach(a, b)=max{dk (a), dk (b), ∥a−b∥}
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ZeroKey — Method: 2D Candidates

1. Text Candidate Generation (GPT-4o)

Input: Rendered views of the shape

Prompt: “List possible salient key
points (in text).”

Output: K = {k1, . . . , kN} (e.g.
“nose”, “wing tip”)

Typically generates 6–10 keypoint
names per shape

2. 2D Localization (Molmo)

Prompt: "Point to the {k i} in

this image."

Output: 2D coordinates pi ,j for each
view Vj

Leverages Molmo’s point-level
supervision for precise localization

Process across M = 26 views (default)
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ZeroKey — Method: 3D Aggregation

3. Soft Voting Back-Projection

Stabilize ray casting with h×h patch refinement:

Back-project patch Si ,j centered at 2D prediction
pi ,j
Assign Gaussian soft-voting weights Wi ,j :

Wi ,j =
∑
p∈Ni,j

1

σ
√
2π

exp

(
−
∥pi ,j − p∥2

2σ2

)

Higher weight for points closer to patch center

Mitigates noise from sharp angular intersections

σ = h/3 in implementation

4. Weighted HDBSCAN

Cluster 3D candidates Pi :

dmreach(a, b) = max{corek(a), corek(b), ∥a−b∥}

Incorporate weights Wi ,j

Filter outliers (Molmo noise)

minPts k = 10 (fixed)

Output: Centroid of densest
cluster
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ZeroKey — Why Molmo?

Molmo is a recent MLLM trained with
pixel-level pointing data:

Can output precise (x , y) coordinates

Understands natural-language spatial
references

Trained on human point annotations

Why not GPT-4o directly?

GPT-4o reasons about images but
outputs bounding boxes, not points

IoU@0.10: GPT-4o = 20.73% vs.
Molmo = 79.43%

(b) Rendered Multiple Views

> Point to the corners of

the back of the chair

Z
er

o
K

ey
G

P
T

-4
o

(a) Ours Predicted Keypoint

GPT-4o fails to precisely locate keypoints; Molmo succeeds

due to pixel-level training.

Key insight: Point-level training is essential — scaling alone does not solve localization.

Bingchen Gong 3D Understanding via Foundation Models 14/42



ZeroKey — Quantitative Results

KeypointNet benchmark (airplane, chair, table)

Method IoU (%) @ geo. dist.
0.01 0.05 0.10

Supervised / Few-shot:
UKPGAN (supervised) 6.54 26.55 46.49
FSKD (few-shot) 7.94 31.14 57.03
B2-3D (few-shot) 20.29 57.72 70.57

Zero-shot (ours):
RedCircle 0.34 3.05 18.50
GPT-4o 0.48 6.04 20.73
CLIP-DINOiser 1.41 9.80 25.56
StablePoints 5.80 19.91 38.22
ZeroKey 13.16 56.60 79.43

Key Takeaways

79.43% IoU@0.10 — surpasses
supervised methods at larger
thresholds

Zero-shot: no 3D keypoint
annotations

3× improvement over
CLIP-DINOiser

Note: Drop at small thresholds expected due to

semantic (vs. geometric) focus.
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ZeroKey — Comparison with Baselines

Visual Comparison:

CLIP-DINOiser: Identifies
prominent regions but fails to
localize precisely

RedCircle: Random sampling with
CLIP similarity — noisy results

ZeroKey: Precise localization
according to text prompt

Key Difference

ZeroKey uses point-specific prompts
+ Molmo’s pixel-level training for
accurate localization.
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ZeroKey — Qualitative Results

Observations:

Strong: Distinctive,
nameable parts (e.g., wing
tips, wheel centers).

Weak: Arbitrary surface
points, symmetric
duplicates.

Insight: Detection quality
correlates with how
nameable a keypoint is.
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ZeroKey — Analysis: Schelling Points & Describability

Schelling Points: Focal points people select
independently due to prominence (game
theory).

We ask Molmo to Describe    Molmo predicts point

S
al
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nt

 P
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nt
N

on
-S
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ie

nt
 P
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nt

 Molmo predicts 
no point

Ask Molmo to describe green point → use description to

retrieve via ZeroKey (blue).

Key Findings:

Salient points (semantically meaningful)
are retrieved with much higher accuracy

Non-salient points: ZeroKey may find
similar parts or fail entirely

Confirms: describability ≈ detectability

Salient vs. non-salient retrieval accuracy across distance

thresholds.
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ZeroKey — Ablation: Model Configurations

0.00 0.02 0.04 0.06 0.08 0.10
Geodesic Distance Threshold

0.0

0.2
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Methods
ZeroKey (Ours)
Only 6 Views
w/o HDBSCAN Clustering
Global Text Prompt
Textured
Position Map
Binary Back-projection

Impact of Modifications:

Original method (blue)

Global Text prompt (red)

Alternative renderings (orange,
purple, brown)

No HDBSCAN (green)

This comparison shows the contribution of

each component to overall performance.
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ZeroKey — Ablation: Aggregation & Rendering

Multi-View Aggregation

6 views 26 views 46 views

More views → more keypoints
detected
6 views achieves 80% of full
performance
Prompt: “corner of the table”

Key Findings

Clustering: Direct averaging fails;
HDBSCAN is essential

Soft Voting: Gaussian weights outperform
binary (weight=1)

Rendering: Pointmap colors / mesh textures
don’t help (out-of-distribution for Molmo)

Robustness

Method works with simple shaded renderings
— no special preprocessing required.
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ZeroKey — Summary

Key Contributions:

1 First zero-shot 3D keypoint
detector using MLLMs

2 Language grounding enables both
localization and naming

3 79.43% IoU@0.10 — surpasses
supervised at larger thresholds

4 Key ingredients: Molmo + HDBSCAN
+ multi-view aggregation

Limitations

Fine-grained: Lower accuracy
at small distance thresholds
(semantic vs. geometric focus)

Speed: Requires multi-view
rendering + MLLM inference per
view

Symmetric parts: May detect
one instance of repeated
keypoints

But what if we want dense part-level features instead of sparse keypoints?

=⇒ PatchAlign3D
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PatchAlign3D — Visual Overview

PatchAlign3D

Text encoderPart queries

{bottle, cap} {lid, body, base} {bulb, body, screw}{neck, antlers, body,

leg, hoof}

{lens, temple}

PatchAlign3D

Find3D

Patch-label

similarity

Inference

Perfume Pottery Elk Lightbulb Sunglasses

An encoder-only 3D model producing language-aligned patch features — enabling zero-shot part

segmentation in a single feed-forward pass without multi-view rendering at test time.
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PatchAlign3D — Problem Setup

Zero-shot 3D Part Segmentation

Given a point cloud + text queries (part
names), segment the shape

No test-time category-specific training

Must generalize across diverse object types

Prior approaches (e.g. Find3D, COPS, SATR):

Render multiple views at inference

Run 2D foundation model per view

Fuse predictions back to 3D

Find3D: feed-forward but limited (23.3%
mIoU)

→ Slow (>100s for SATR) and prompt-sensitive

PatchAlign3D Goal

An encoder-only 3D model that:

Operates in a single feed-forward
pass

Produces language-aligned patch
features

Achieves SOTA zero-shot part
segmentation

Key Insight

Patch-level aggregation averages out
annotation noise — more robust than
point-level learning.
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PatchAlign3D — Architecture

Stage-1 Stage-2

Visual projection head

2D Visual
encoder

PointNet

Transformer

prompts:{wing,
body, tail, engine}

Text encoderText projection head

PointNet

Transformer layers:

{1,2,..,L-1}

FPS k-NN

Multi-view
Rendering

Back-projection

to 3D

Cosine
similarity

Loss

Contrastive Loss
FPS

Layer L

+ per-patch 
 average

Initialized
From

Stage-1

Input: 2048 points (XYZ only)

Patches: G=128 patches × 32 points

Encoder: 12-layer transformer

Stage 1: DINOv2 feature distillation

Stage 2: Text-patch contrastive
alignment

Inference: si ,j =
1
τ ⟨zi , tj⟩+ b
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PatchAlign3D — Loss Functions

Stage 1: Cosine-Similarity Regression

Align 3D patch features fi with
back-projected DINOv2 features di :

L2D =
1

G

G∑
i=1

(
1− fi · di

∥fi∥ ∥di∥

)

G = 128 patches per shape

DINOv2 features averaged across visible
views

Trains all transformer layers

Stage 2: SigLIP Contrastive Loss

Align patch features zi with text embeddings
tj :

Ltext = −
∑
i ,j

[
yi ,j log σ(si ,j) + (1−yi ,j) log σ(−si ,j)

]

si ,j =
1
τ ⟨zi , tj⟩+ b (learnable τ, b)

Fractional labels yi ,j ∈ [0, 1]

Freeze first 11 layers; train last block +
proj. head

Why SigLIP over softmax? Sigmoid operates per-pair → naturally handles multiple positive parts

per shape.
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PatchAlign3D — Two-Stage Pre-Training

Stage 1: 2D→3D Feature Distillation

Teacher: DINOv2 (frozen)
Target: Transfer dense visual priors to 3D

1 Render N views of each shape
2 Extract dense DINOv2 features per view
3 Back-project to 3D:

d(x) = 1
|V (x)|

∑
r Fr

(
ur (x), vr (x)

)
4 Train with cosine-similarity regression

→ 3D patches capture local visual structure

Stage 2: Contrastive Text Alignment

Freeze: Early 11 transformer layers
Train: Last block + projection head

1 Find3D annotations (>2M parts, 761
categories)

2 SigLIP contrastive loss
3 Fractional labels yi ,j ∈ [0, 1] for soft

matching
4 Handles noisy/overlapping annotations

→ Patch features aligned with part-level text

Why two stages? Joint training: 50.2% → Two-stage: 56.9% mIoU
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PatchAlign3D — Training Data

Based on Find3D data engine:

32,052 Objaverse shapes (28,827 train / 3,225
val)

761 object categories

>2 million part annotations

Annotation pipeline (fully automatic):

1 10 multi-view renderings per shape

2 SAM generates 2D part masks

3 Gemini 1.5 VLM assigns single-word part
names

4 Back-project masks to point cloud

Key Advantage

Same training data as Find3D

But PatchAlign3D distills this into
a feed-forward encoder

No multi-view rendering at test
time

Training details:

100 epochs per stage, batch size
32

AdamW optimizer, lr 3× 10−4

Input: XYZ coordinates only
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PatchAlign3D — Main Results: ShapeNetPart

Zero-shot Part Segmentation on ShapeNetPart

Method mIoU (%) cIoU (%) Type

PointCLIPv2 16.1 16.2 CLIP-based
SATR 32.8 36.3 Rendering (mesh)
Find3D 23.3 23.9 Feed-forward 3D
COPS 25.6 32.2 DINOv2 + multi-view

PatchAlign3D 56.9 53.1 Feed-forward 3D

+31.3% mIoU over COPS
+33.6% mIoU over Find3D

Consistent gains in 15 out of 16
categories

at 0.4s inference (vs. 111s SATR)
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PatchAlign3D — Qualitative Results: ShapeNetPart

Airplane Car Chair Lamp Cap

GT

COPS

Find3D

Ours

Zero-shot Segmentation

PatchAlign3D produces
sharper, more coherent
part boundaries.

COPS: noisy,
inconsistent

Find3D: blurry
boundaries

Ours: clean parts
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PatchAlign3D — Qualitative Results: FAUST Humans

Non-Rigid Human Body Segmentation
Pose 1 Pose 2 Pose 3

G
T

C
O
P
S

O
u
rs

FAUST Results:

67.8% mIoU (vs. 30.4% COPS)

+37.4% improvement

Parts: arm, head, leg, torso

Key Observation

PatchAlign3D remains stable under
pose variation, while COPS degrades
on non-rigid deformations.
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PatchAlign3D — Results Across Benchmarks

PatchAlign3D Best Baseline
Benchmark mIoU cIoU mIoU Method

ShapeNetPart 56.9 53.1 32.8 SATR
PartNetE 41.4 42.2 27.0 COPS
FAUST (humans) 67.8 — 30.4 COPS
ScanObjectNN 22.7 25.3 18.8 COPS

Objaverse (seen) 37.5 — 28.9 Find3D
Objaverse (unseen) 35.6 — 34.6 Find3D

Highlights

FAUST: 67.8% mIoU on non-rigid human body segmentation (+37.4 over COPS)

ScanObjectNN: Robust to real-world noise and partial scans

Unseen categories: Strong generalization (35.6% vs. 34.6% Find3D)
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PatchAlign3D — Inference Speed

Method Time (s/shape) Requires Multi-View?

SATR 111.0 Yes (mesh rendering)
COPS 1.38 Yes (DINOv2 per view)
Find3D 0.4 No
PatchAlign3D 0.4 No

Why is PatchAlign3D fast?

Single feed-forward pass through 3D
encoder

No rendering pipeline at test time

Text embeddings can be pre-computed

Practical Impact

∼275× faster than SATR

Enables real-time / large-scale
applications

Point-cloud input (no mesh needed)
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PatchAlign3D — Ablation Studies

Training Strategy (ShapeNetPart)

Strategy mIoU

Stage 2 only 50.5
Joint training 50.2
Two-stage 56.9 (+6.4)

2D Feature Encoder

Encoder mIoU

DINOv3 46.5
OpenCLIP bigG 49.3
DINOv1 51.8
DINOv2 56.9 (+5.1)

Text Encoder

Encoder mIoU

SigLIP 46.4
Gemma-2-9B-it 54.8
OpenCLIP bigG 56.9 (+2.1)

Freezing Strategy (Stage 2)

Strategy mIoU

Full fine-tuning 49.4
Last 2 blocks 55.7
Last block 56.9 (+1.2)

Takeaways: Two-stage training essential • DINOv2 for vision, OpenCLIP for text •
Fine-tune last block only
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PatchAlign3D — Feature Evolution Across Stages

(a) DINOv2 (b) Stage 1 (c) Stage 1 + 2

Features visualized via PCA to RGB.

Observations:

DINOv2: Back-projected
features are noisy, inconsistent

Stage 1: Coherent,
geometry-aware patterns
emerge

Stage 2: Preserves structure,
adds text-driven semantics

Takeaway

Two-stage design is essential:
Stage 1 refines, Stage 2 aligns.
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PatchAlign3D — Keypoint Detection Extension

PatchAlign3D features also enable keypoint detection (connecting back to ZeroKey)

Method IoU (%) @ geo. dist.
0.01 0.05 0.10

RedCircle 0.34 3.05 18.50
CLIP-DINOiser 1.41 9.80 25.56
ZeroKey 13.16 56.60 79.43

PatchAlign3D (zero-shot) — — 32.88
PatchAlign3D (few-shot) — — 64.07

Complementarity

PatchAlign3D’s dense features + few-shot
adaptation → 64.07% IoU@0.10

Different Trade-offs

ZeroKey: truly zero-shot, no training

PatchAlign3D: requires pre-training but
faster inference
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PatchAlign3D — Summary & Limitations

Key Contributions

1 First encoder-only 3D model with
language-aligned local features

2 Two-stage pre-training: DINOv2 distillation
→ SigLIP text alignment

3 Multi-positive contrastive with fractional
labels handles noisy annotations

4 56.9% mIoU on ShapeNetPart (+31.3% over
COPS)

5 0.4s inference — 275× faster than SATR

Limitations

Data coverage: Pre-trained on
curated Objaverse subset (32K
shapes of 800K+)

Fixed patching: Not
adaptive/hierarchical for varying
point cloud sizes

Annotation quality: Relies on
SAM+VLM pseudo-labels
(inherently noisy)

Future: Scale data, adaptive patching,
inherit global 3D foundation model
knowledge.
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Limitations & Discussion

ZeroKey Limitations

Prompt quality dependency: Poor
keypoint names → poor detection

Non-salient points: Fails on arbitrary
or ambiguous locations

Inference cost: Requires MLLM calls
per view per keypoint

Symmetric objects: Difficulty
distinguishing left/right

PatchAlign3D Limitations

Patch resolution: 128 patches may
miss very small parts

Training data bias: Performance tied
to Objaverse coverage

Real-world gap: 22.7% mIoU on
ScanObjectNN

XYZ-only input: Does not leverage
color or normals

Both methods demonstrate the viability of foundation-model-based 3D understanding,
while highlighting the gap between synthetic and real-world performance.
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Conclusion

ZeroKey (ICCV 2025)
Sparse keypoints via MLLM

79.4% IoU, flexible

PatchAlign3D
Dense features via distillation

56.9% mIoU, 0.4s

Complementary

Unifying Theme: Local 3D via Language

2D foundation models (MLLM, DINOv2) → 3D

Language enables localization + semantic
naming

No 3D keypoint/part supervision needed

Open Challenges

Real-world noise & occlusion

Fine-grained / small parts

Unified sparse + dense models
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Future Directions

Short-Term

Extend to articulated / deformable
objects

Finer patch resolution for small parts

Integration with 3D scene understanding

Scaling Up

Larger pre-training data (full Objaverse)

Multi-granularity features (part →
sub-part)

Real-world point cloud inputs (LiDAR,
depth)

Ongoing: RL from LLM Feedback

LLM scores correspondence quality as
reward

Train DINO+LoRA via reinforcement
learning

Preliminary: +20% PCK on 2D matching

Next: Extend to 3D keypoints

Vision
A single foundation model for 3D shapes at any
granularity, language-grounded, no
category-specific training.
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Thank You!
Questions?

ZeroKey: https://sites.google.com/view/zerokey

PatchAlign3D: https://souhail-hadgi.github.io/patchalign3dsite/

Website: https://s2.hk

Bingchen Gong • École Polytechnique

https://sites.google.com/view/zerokey
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