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Why Localized 3D Understanding?

Goal: Understand 3D shapes at the sub-shape
level

Key Challenge

How can we achieve fine-grained 3D

e Keypoint detection (e.g. wing tip, leg joint) s e vl 20
e Part segmentation (e.g. wing, tail, fuselage) supervision?

@ Semantic labeling without manual annotation

e Language-driven queries (“show me the wing")

Leverage Multi-Modal LLMs and 2D

foundation models to bridge the gap
@ Expensive per-category 3D annotations from 2D—3D.

Traditional approach:

o Category-specific models

@ Poor generalization to new shapes
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Contributions at a Glance

ZeroKey (ICCV 2025) PatchAlign3D (arXiv 2025)

e First zero-shot 3D keypoint detector e SOTA zero-shot 3D part segmenter
e No 3D annotations needed e Single feed-forward pass (0.4s)

e 79.43% loU®0.10 (3x baselines) ® 56.9% mloU on ShapeNetPart

Common thread: Language grounding 4+ 2D foundation
models — localized 3D understanding without 3D supervision
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Background: Foundation Models We Build On

Vision-Language Models Visual Feature Extractors

e CLIP / OpenCLIP: Contrastive @ DINOv2: Self-supervised ViT producing
image-text pre-training; shared dense local features; excels at spatial
embedding space for images and text correspondence

@ SigLIP: Sigmoid-based variant — @ Molmo: MLLM trained with pixel-level
per-pair contrastive loss (no softmax) point annotations; can output precise

o GPT-40: Multimodal LLM with image (x, y) coordinates |
understanding and reasoning )

Key insight: These 2D models encode rich geometric and semantic knowledge.
Our work transfers this knowledge to 3D without 3D-specific supervision. J
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Two Complementary Approaches

ZeroKey (ICCV 2025) PatchAlign3D (arXiv 2025)

@ Task: Zero-shot 3D keypoint detection o Task: Zero-shot 3D part segmentation

o Key idea: Exploit pixel-level MLLM o Key idea: Encoder-only 3D model with
annotations across multi-view renderings language-aligned patch features

e Pipeline: GPT-40 — Molmo — @ Training: DINOv2 distillation — SigLIP
back-project — HDBSCAN text alignment

@ Result: Competitive with supervised @ Result: SOTA across benchmarks;
methods; no 3D annotations needed ) single feed-forward pass )

{ Common theme: Foundation models + lan-
guage grounding — localized 3D understanding
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Outline

© ZeroKey: Zero-Shot 3D Keypoint Detection
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ZeroKey — Visual Overview

Unseen 3D Unseen 3D
Keypoint Queries Shape/Category
Back Wingtip
@ Front Wingtip
Turbine

i Molmo! Point N

I to {query} in :

I

| this image. y (b) CLIP-DINOiser (c) Ground Truth

A ——————————

Without ground truth labels, ZeroKey leverages pixel-level MLLM reasoning to extract and name
salient 3D keypoints — achieving competitive performance with supervised methods.
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ZeroKey — Problem Setup

3D Keypoint Detection

@ Given a 3D mesh, detect semantically
meaningful points

ZeroKey is the first method to show
that pixel-level MLLM annotations
can be exploited for 3D keypoint
detection without any ground truth.

@ Schelling points: game-theoretic focal points
people select independently

o E.g. wing tips, wheel centers, chair legs

o Traditionally requires dense per-point Evaluation:
annotations o KeypointNet benchmark
Zero-shot setting: o Categories: airplane, chair, table
@ No 3D keypoint labels at training time @ Metric: loU at geodesic distance

@ No category-specific fine-tuning thresholds

@ Must both localize and name keypoints
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ZeroKey — Pipeline Overview

Aggregated 3D Point P;

LY
Spatial Attention Images Vi Camera \\ M Views
I
Keypoint Query k; ﬁ Projection C;
oo A ®.9,
1
1 A Nose ! \ ]
I\ ________ J / )
~" & 20 pot \\E_E
l MOLMO J‘ B I T
Lifting from
‘I 2D to 3D ‘
LLM '—" pomt to the nose tip in this image : 3D point p\ Aggregatlon
P /
Stage 1: 2D Detection Stage 2: Soft Voting Stage 3: Clustering
Molmo localizes each named Gaussian kernel weights for HDBSCAN aggregation with mutual
keypoint across N views back-projection reachability

pi,j = Molmo(V}, ki) w,; « ZGXP( llruP”) ureac (2, b) =max{d(a), ci(b), |a—b}
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ZeroKey — Method: 2D Candidates

1. Text Candidate Generation (GPT-40)

@ Input: Rendered views of the shape

@ Prompt: “List possible salient key
points (in text).”

@ Output: K = {ki,..., kn} (e.g
“nose”, “wing tip")

@ Typically generates 6-10 keypoint
names per shape

2. 2D Localization (Molmo)

Prompt: "Point to the {k i} in
this image."

Output: 2D coordinates p;; for each
view V;
Leverages Molmo's point-level

supervision for precise localization

Process across M = 26 views (default)
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ZeroKey — Method: 3D Aggregation

3. Soft Voting Back-Projection
Stabilize ray casting with hx h patch refinement:
@ Back-project patch S;; centered at 2D prediction
Pi,j
@ Assign Gaussian soft-voting weights W, ;:

1 pr-—sz>
W, = exp| ——L——
i= Y (1R

PGN,‘J

@ Higher weight for points closer to patch center
e Mitigates noise from sharp angular intersections

@ o = h/3 in implementation

4. Weighted HDBSCAN
Cluster 3D candidates P;:

dmreach (@, b) = max{corex(a), corex(b), ||a—b||}

Incorporate weights W ;
Filter outliers (Molmo noise)
minPts k = 10 (fixed)

Output: Centroid of densest
cluster
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ZeroKey — Why Molmo?

Molmo is a recent MLLM trained with

. — [>pomwnecomersat | © g1 re T e
pixel-level pointing data: | e bt b AN ! |
. . 3 ] / L \ | |
e Can output precise (x, y) coordinates R A = . N7 K y |
. ' \ | I I ‘ !
@ Understands natural-language spatial i b . ———i——u/——:‘- —————— ;———.—‘———!
references I h 3l y [ | '
. . . | I ! 4 $ / N | \ | i
@ Trained on human point annotations ! ‘ ST o ! | ! ‘ J !
L A S [ |
Why not GPT—40 directly7 (a) Ours Predicted Keypoint (b) Rendered ’\|/|_U|tip|€\ﬁEWS
@ GPT-40 reasons about images but
outputs bounding boxes, not points GPT-4o fails to precisely locate keypoints; Molmo succeeds
e loU®@0.10: GPT-40 = 20.73% VS. due to pixel-level training.
Molmo = 79.43%
Key insight: Point-level training is essential — scaling alone does not solve localization. J
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ZeroKey — Quantitative Results

KeypointNet benchmark (airplane, chair, table)

Method loU (%) @ geo. dist.
0.01 0.05 0.10
Supervised / Few-shot:
UKPGAN (supervised)  6.54  26.55 46.49
FSKD (few-shot) 794 3114 57.03
B2-3D (few-shot) 20.29 57.72 7057
Zero-shot (ours):
RedCircle 0.34 3.0 1850
GPT-40 0.48 6.04 20.73
CLIP-DINOiser 1.41 9.80 2556
StablePoints 580 19.91 38.22
ZeroKey 13.16 56.60 79.43

Key Takeaways

@ 79.43% loU®0.10 — surpasses

supervised methods at larger
thresholds

@ Zero-shot: no 3D keypoint
annotations

@ 3x improvement over
CLIP-DINOiser

Note: Drop at small thresholds expected due to

semantic (vs. geometric) focus.
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ZeroKey — Comparison with Baselines

|
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Ground Truth Ours ClipDINO Red Circle

Visual Comparison:

o CLIP-DINQiser: Identifies
prominent regions but fails to
localize precisely

@ RedCircle: Random sampling with
CLIP similarity — noisy results

o ZeroKey: Precise localization
according to text prompt

Key Difference

ZeroKey uses point-specific prompts
+ Molmo's pixel-level training for
accurate localization.
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ZeroKey — Qualitative Results

Observations:

@ Strong: Distinctive,
nameable parts (e.g., wing
tips, wheel centers).

@ Weak: Arbitrary surface

7 points, symmetric

duplicates.

@ Insight: Detection quality
correlates with how
nameable a keypoint is.

Bingchen Gong
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ZeroKey — Analysis: Schelling Points & Describability

Schelling Points: Focal points people select
independently due to prominence (game
theory).

We ask Molmo to Describe Molmo predicts point®
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Ask Molmo to describe green point — use description to

retrieve via ZeroKey (blue).
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Key Findings:

e Salient points (semantically meaningful)
are retrieved with much higher accuracy

@ Non-salient points: ZeroKey may find
similar parts or fail entirely

e Confirms: describability ~ detectability

Accuracy Plot for Salient and Non-Salient Points

~e— Salient Points
0] = Non-Salient Points

Accuracy

Distance Threshold

Salient vs. non-salient retrieval accuracy across distance

thresholds.
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ZeroKey — Ablation: Model Configurations

1.0
0.8
2
o
p 0.6 Methods
> —e— ZeroKey (Ours)
w —¥— Only 6 Views
E 0.4+ —4+— w/o HDBSCAN Clustering
—<— Global Text Prompt
0.2 —— Textured
—+— Position Map
Binary Back-projection
0.0+

0.00 0.02 0.04 0.06 0.08 0.10

Geodesic Distance Threshold
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Impact of Maodifications:
e Original method (blue)
@ Global Text prompt (red)

@ Alternative renderings (orange,
purple, brown)

e No HDBSCAN (green)

This comparison shows the contribution of

each component to overall performance.
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ZeroKey — Ablation: Aggregation & Rendering

Multi-View Aggregation Key Findings

@ Clustering: Direct averaging fails;

HDBSCAN is essential
@ Soft Voting: Gaussian weights outperform
binary (weight=1)

e Rendering: Pointmap colors / mesh textures
don't help (out-of-distribution for Molmo)

6 views 26 views 46 views

v

@ More views — more keypoints

get_eCtEd e S0 G R Robustness
@ D views achieves o ortu Method works with simple shaded renderings
performance

— no special preprocessing required.

@ Prompt: “corner of the table”

Bingchen Gong 3D Understanding via Foundation Models 20/42



ZeroKey — Summary

-

Key Contributions:

© First zero-shot 3D keypoint
detector using MLLMs

@ Language grounding enables both
localization and naming

© 79.43% loU®0.10 — surpasses
supervised at larger thresholds

@ Key ingredients: Molmo + HDBSCAN
+ multi-view aggregation

/

o Fine-grained: Lower accuracy
at small distance thresholds
(semantic vs. geometric focus)

@ Speed: Requires multi-view
rendering + MLLM inference per
view

@ Symmetric parts: May detect
one instance of repeated
keypoints

But what if we want dense part-level features instead of sparse keypoints?

— PatchAlign3D

Bingchen Gong
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Outline

9 PatchAlign3D: Language-Aligned 3D Part Segmentation
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PatchAlign3D — Visual Overview

Perfume Pottery Elk Lightbulb

Sunglasses

PatchAlign3D
Patch-label

similarity

Part queries

Text encoder

, hoof}

An encoder-only 3D model producing language-aligned patch features — enabling zero-shot part
segmentation in a single feed-forward pass without multi-view rendering at test time.
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PatchAlign3D — Problem Setup

Zero-shot 3D Part Segmentation

@ Given a point cloud + text queries (part S Do)
names), segment the shape An encoder-only 3D model that:

@ No test-time category-specific training o Operates in a single feed-forward

@ Must generalize across diverse object types pass

@ Produces language-aligned patch

Prior approaches (e.g. Find3D, COPS, SATR): features
@ Render multiple views at inference o Achieves SOTA zero-shot part
Run 2D foundation model per view segmentation

°

o Fuse predictions back to 3D

e Find3D: feed-forward but limited (23.3%
mloU) Patch-level aggregation averages out

— Slow (>100s for SATR) and prompt-sensitive ~ annotation noise — more robust than
point-level learning.
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PatchAlign3D — Architecture

/
|
FPS <’
—
A
S
Multi-view
Rendering
9# 2D Visual | Bock-projection - L\ ey S
e 03D . + per-paich
average

w'%rvi

o Input: 2048 points (XYZ only)
e Patches: G=128 patches x 32 points

e Encoder: 12-layer transformer

Bingchen Gong

Stage-1 Stage-2
>
PointNet HpoiniNet
Initialized
*.. Sape
Transformer

Layer L
| | prompts: {wing,
body, tail, engine}

Visual projection head

!
T i

‘Text projection head -

Cosine
similarity

o Stage 1: DINOv2 feature distillation

o Stage 2: Text-patch contrastive
alignment
o Inference: s;; = L(z;,t;) + b
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PatchAlign3D — Loss Functions

Stage 1: Cosine-Similarity Regression
Align 3D patch features f; with
back-projected DINOv2 features d;:

Fan = GZ( Hf H ||d ||)

@ G = 128 patches per shape

DINOv2 features averaged across visible
views

@ Trains all transformer layers

V.

Stage 2: SigLIP Contrastive Loss

Align patch features z; with text embeddings
t;:

Lot = (1-yij) IOgU(_Sl}j)}

—Z [vijloga(sij) +
ij

l<ZI'7 t.i> +b
e Fractional labels y;; € [0,1]

® 5= (learnable 7, b)

@ Freeze first 11 layers; train last block +
proj. head

Why SigLIP over softmax? Sigmoid operates per-pair — naturally handles multiple positive parts
per shape.

Bingchen Gong
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PatchAlign3D — Two-Stage Pre-Training

Stage 1: 2D—3D Feature Distillation Stage 2: Contrastive Text Alignment

Teacher: DINOv2 (frozen) Freeze: Early 11 transformer layers
Target: Transfer dense visual priors to 3D Train: Last block + projection head

© Render N views of each shape @ Find3D annotations (>2M parts, 761

@ Extract dense DINOv2 features per view categories)

© Back-project to 3D: @ SiglLIP contrastive loss

d(x) = W >, Frur(x), ve(x)) (3] Fractic.)nal labels y; ; €0, 1] for soft
@ Train with cosine-similarity regression matching
@ Handles noisy/overlapping annotations

— 3D patches capture local visual structure

— Patch features aligned with part-level text

Why two stages? Joint training: 50.2% — Two-stage: 56.9% mloU
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PatchAlign3D — Training Data

Based on Find3D data engine:

@ 32,052 Objaverse shapes (28,827 train / 3,225
val)

@ 761 object categories

@ >2 million part annotations

Annotation pipeline (fully automatic):
© 10 multi-view renderings per shape
@ SAM generates 2D part masks

© Gemini 1.5 VLM assigns single-word part
names

© Back-project masks to point cloud

Key Advantage
@ Same training data as Find3D

o But PatchAlign3D distills this into

a feed-forward encoder

@ No multi-view rendering at test
time

Training details:

@ 100 epochs per stage, batch size
32

e AdamW optimizer, Ir 3 x 1074
@ Input: XYZ coordinates only

Bingchen Gong
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PatchAlign3D — Main Results: ShapeNetPart

Zero-shot Part Segmentation on ShapeNetPart

Method mloU (%) cloU (%) Type

PointCLIPv2 16.1 16.2 CLIP-based

SATR 328 36.3 Rendering (mesh)
Find3D 23.3 23.9 Feed-forward 3D
COPS 25.6 32.2 DINOvV2 + multi-view
PatchAlign3D 56.9 53.1 Feed-forward 3D

Consistent gains in 15 out of 16
categories
at 0.4s inference (vs. 111s SATR)

+31.3% mloU over COPS
+33.6% mloU over Find3D
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PatchAlign3D — Qualitative Results: ShapeNetPart

Airplane Chair Lamp

GT

COPS

Find3D

Ours

Bingchen Gong

* @w Zero-shot Segmentation
e PatchAlign3D produces
sharper, more coherent
“ w m S & part boundaries.
’ o COPS: noisy,
‘ i inconsistent
“ e Find3D: blurry
boundaries
“ m ﬁﬂ T & @ QOurs: clean parts
SAD, 3 {§ﬁ
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PatchAlign3D — Qualitative Results: FAUST Humans

Non-Rigid Human Body Segmentation FAUST Results:
Pose 1 Pose 2 Pose 3 @ 67.8% mloU (vs. 30.4% COPS)

e +37.4% improvement

o Parts: arm, head, leg, torso

GT

Key Observation

PatchAlign3D remains stable under
pose variation, while COPS degrades
on non-rigid deformations.

COPS

t
ﬁ
t

Ours
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PatchAlign3D — Results Across Benchmarks

PatchAlign3D Best Baseline

Benchmark mloU  cloU mloU Method
ShapeNetPart 56.9 53.1 328 SATR
PartNetE 41.4 42.2 27.0 COPS
FAUST (humans) 67.8 — 304 COPS
ScanObjectNN 22.7 25.3 18.8  COPS
Objaverse (seen) 37.5 — 28.9 Find3D
Objaverse (unseen) 35.6 — 346 Find3D

Highlights
e FAUST: 67.8% mloU on non-rigid human body segmentation (+37.4 over COPS)

@ ScanObjectNN: Robust to real-world noise and partial scans

e Unseen categories: Strong generalization (35.6% vs. 34.6% Find3D)
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PatchAlign3D — Inference Speed

Method Time (s/shape) Requires Multi-View?
SATR 111.0 Yes (mesh rendering)
COPS 1.38 Yes (DINOv2 per view)
Find3D 0.4 No
PatchAlign3D 0.4 No

Why is PatchAlign3D fast?

Practical Impact

@ Single feed-forward pass through 3D

encoder

@ No rendering pipeline at test time

@ Text embeddings can be pre-computed

@ ~275x faster than SATR

@ Enables real-time / large-scale
applications

@ Point-cloud input (no mesh needed)

Bingchen Gong
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PatchAlign3D — Ablation Studies

Training Strategy (ShapeNetPart) Text Encoder
Strategy mloU Encoder mloU
Stage 2 only 50.5 SigLIP ) 46.4
Joint training 50.2 Gemma—2—98.—|t 54.8
Two-stage 56.9 (+6.4) OpenCLIP bigG ~ 56.9 (+2.1)
2D Feature Encoder Freezing Strategy (Stage 2)
Encoder mloU Strategy mloU
DINOv3 46.5 Full fine-tuning 49.4
OpenCLIP bigG 49.3 Last 2 blocks 55.7
DINOv1 51.8 Last block 56.9 (+1.2)
DINOv2 56.9 (+5.1)

Takeaways: Two-stage training essential @ DINOv2 for vision, OpenCLIP for text e
Fine-tune last block only
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PatchAlign3D — Feature Evolution Across Stages

Observations:

o DINOv2: Back-projected
features are noisy, inconsistent

(a) DINOv2 (b) Stage 1 (c) Stage 1 + 2

o Stage 1: Coherent,
geometry-aware patterns
emerge

o Stage 2: Preserves structure,
adds text-driven semantics

LELGENE

Two-stage design is essential:
Stage 1 refines, Stage 2 aligns.

Features visualized via PCA to RGB.
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PatchAlign3D — Keypoint Detection Extension

PatchAlign3D features also enable keypoint detection (connecting back to ZeroKey)

Method loU (%) @ geo. dist.

0.01 0.05 0.10
RedCircle 0.34 3.05 18.50
CLIP-DINOiser 1.41 9.80 2556
ZeroKey 13.16 56.60 79.43
PatchAlign3D (zero-shot) — — 32.88
PatchAlign3D (few-shot) — —  64.07

Different Trade-offs

PatchAlign3D's dense features + few-shot @ ZeroKey: truly zero-shot, no training
adaptation — 64.07% loU@0.10 @ PatchAlign3D: requires pre-training but

Complementarity

faster inference
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PatchAlign3D — Summary & Limitations

Key Contributions

@ First encoder-only 3D model with o Data coverage: Pre-trained on
language-aligned local features curated Objaverse subset (32K

@ Two-stage pre-training: DINOv2 distillation shapes of 800K+)

— SigLIP text alignment o Fixed patching: Not
adaptive/hierarchical for varying

© Multi-positive contrastive with fractional
point cloud sizes

labels handles noisy annotations

@ 56.9% mloU on ShapeNetPart (+31.3% over o Annotation quality: Relies on
COPS) SAM+VLM pseudo-labels

© 0.4s inference — 275 x faster than SATR ) (inherently noisy) y

Future: Scale data, adaptive patching,
inherit global 3D foundation model
knowledge.
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Outline

@ Conclusion & Future Directions
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Limitations & Discussion

PatchAlign3D Limitstions

o Prompt quality dependency: Poor
keypoint names — poor detection

@ Non-salient points: Fails on arbitrary
or ambiguous locations

@ Inference cost: Requires MLLM calls
per view per keypoint

@ Symmetric objects: Difficulty
distinguishing left/right

o Patch resolution: 128 patches may
miss very small parts

@ Training data bias: Performance tied
to Objaverse coverage

e Real-world gap: 22.7% mloU on
ScanObjectNN

@ XYZ-only input: Does not leverage
color or normals

Both methods demonstrate the viability of foundation-model-based 3D understanding,
while highlighting the gap between synthetic and real-world performance.
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Conclusion

ZeroKey (ICCV 2025) omplementar PatchAlign3D
Sparse keypoints via MLLM —| Dense features via distillation
79.4% loU, flexible 56.9% mloU, 0.4s

Unifying Theme: Local 3D via Language Open Challenges

@ 2D foundation models (MLLM, DINOv2) — 3D @ Real-world noise & occlusion
@ Language enables localization + semantic @ Fine-grained / small parts
naming

@ Unified sparse + dense models

@ No 3D keypoint/part supervision needed

Bingchen Gong
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Future Directions

(Short-Term | Ongoing: RL from LLM Feedback

e Extend to articulated / deformable
objects

e Finer patch resolution for small parts

@ Integration with 3D scene understandingJ

Scaling Up
@ Larger pre-training data (full Objaverse)

e Multi-granularity features (part —
sub-part)

@ Real-world point cloud inputs (LiDAR,

depth)

.

@ LLM scores correspondence quality as
reward

@ Train DINO+LoRA via reinforcement
learning

@ Preliminary: +20% PCK on 2D matching
@ Next: Extend to 3D keypoints

v

A single foundation model for 3D shapes at any

granularity, language-grounded, no
category-specific training.

Bingchen Gong
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Thank You!

Questions?

ZeroKey: https://sites.google.com/view/zerokey
PatchAlign3D: https://souhail-hadgi.github.io/patchalign3dsite/
Website: https://s2.hk
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